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We present numerical simulations of DNA-chip hybridization, both in the “static”

and “dynamical” cases. In the static case, transport of free targets is limited by

molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic

advection, with a periodic protocol using pumps in a rectangular chamber. This

protocol has been shown to achieve rapid and homogeneous mixing. We suppose in

our model that all free targets are identical; the chip has different spots on which the

probes are fixed, also all identical, and complementary to the targets. The reaction

model is an infinite sink potential of width dh, i.e., a target is captured as soon as it

comes close enough to a probe, at a distance lower than dh. Our results prove that

mixing with chaotic advection enables much more rapid hybridization than the static

case. We show and explain why the potential width dh does not play an important

role in the final results, and we discuss the role of molecular diffusion. We also

recover realistic reaction rates in the static case. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4809518]

I. INTRODUCTION

In any system that requires chemical reactions, an efficient mixing is needed in order to ho-

mogenize the solutions, so as to favor the meeting of reactants. In microfluidics, however, the

Reynolds number of flows at the microscale is small, generally of the order of unity or smaller, so

that Stokes flows should be commonly expected.1 It is well-known that chaotic advection is the

best way to mix efficiently in laminar flows,2–8 all the more for microfluidic flows. We deal here

with microfluidic systems where the height is small (typically 25–50 lm) and the length and width

are “large,” of the order of the centimeter, such as those used for DNA-chip technology.

DNA chip technology is aimed to detect rapidly specific DNA sequences. A DNA chip is

composed of a solid surface (such as glass) onto which arrays of biological probes (single

stranded DNA) are fixed (Figure 1(a)).9 Each probe is made of 10 to 60 predetermined oligonu-

cleotides. The working principle of DNA micro-arrays is the so-called hybridization phenom-

enon: when the chip is exposed to single-stranded DNA samples (targets), preliminary labeled

with a fluorescent marker, targets, and probes match each other only if there is a perfect spe-

cific complementarity between the two sequences of those nucleotides. After a chemical wash

(in order to eliminate unmatched targets still in solution), with the detection of the fluorescent

signal of the hybridized targets, one can conclude on the presence—or not—of particular

sequences in the patient genotype.

During static hybridization (or cover-slip method), where no fluid flow is applied, only mo-

lecular diffusion allows targets to move, and significant variations in the response of the chip

are commonly observed, even after overnight hybridization. Indeed, by considering the diffu-

sion coefficient of DNA in water (D � 10�10 m2=s),10 on a square chip of side ‘ � 1 cm, the

typical diffusion time s‘ is about

s‘ � ‘2=D � 300 h; (1)

which is absolutely incompatible with the wish to get reliable results in a reasonable time.

There is thus a need to improve the reliability of the results, and speed up the process, by
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making sure that a given target visits the whole surface of the chip in a reasonable time,11,12 so

that hybridization can eventually take place if its complementary target is present. Since molec-

ular diffusion alone is too slow, mixing can be achieved thanks to a flow with chaotic advection

properties. In order to limit the volume, the cavity in which the chip is placed, called hybridiza-

tion chamber, must have a height h as small as possible, which is exactly the configuration of

Hele-Shaw cells. However, Hele-Shaw flows can, in a first approximation, be considered as

two-dimensional. In those conditions, the only way to achieve chaotic advection is to make the

flow non-stationary, and time-periodicity is enough.

In this article, we numerically calculate rates of reaction for systems like DNA chips, with

free targets in solution and probes fixed on a surface, in a chaotic advection micromixer. The

configuration chosen for the mixer is a time-periodic system with sources and sinks using

pumps (Figure 1(b)), which was shown to provide efficient mixing.13 The hybridization cham-

ber is rectangular of aspect ratio 3:1, therefore adapted to most DNA chips, usually manufac-

tured on microscope lids. Indeed, using a 2D-model, we showed that the rectangular geometry

enabled a more rapid and homogeneous mixing than the square geometry.14 Our goal is to com-

pare static hybridization with hybridization in a chaotic advection micromixer.

The article is organized as follows: in a first section, we introduce the numerical model

and all the parameters used in chaotic mixing; more especially, we explain how to connect our
own parameters to experimental conditions. Then, we use our numerical results to compare

static vs dynamical hybridization, in terms of typical time of decay of free targets, kinetics of

reaction, and homogeneity. Finally, the last part is devoted to discuss the influence of important

parameters of the model, such as molecular diffusivity of DNA strands.

II. NUMERICAL MODEL

The parameters of mixing are similar to those of our previous works on chaotic mixing:13,15

the hybridization chamber has a surface S ¼ 2:25 cm2 (with sides L ¼
ffiffiffiffiffi
3S
p

; Lw ¼
ffiffiffiffiffiffiffiffi
S=3

p
), for a

height h ¼ 50 lm; the volume of the chamber is, therefore, Vch ¼ 11:25 ll, and the total volume

(including pumps and tubes) is Vtotal ¼ 1:2 Vch. The period of the protocol of the chaotic mixer

is T¼ 4 s, and the flow rate is q ¼ 2 ll=s.

In order to guide experimentalists on how to rely our own parameters with different experi-

mental conditions (e.g., flow speed and chip dimensions), we remind that, as explained in a pre-

vious paper,14 the mixing problem is unchanged if the non-dimensional pulse volume

a ¼ qT

hS
; (2)

which represents the volume of fluid displaced during one period compared to the volume of

the chamber, is kept constant. In this study, a � 0:7, but we stress the fact that this mixing

FIG. 1. (a) Schematic view of a DNA chip. The labeled free targets hybridize to their complementary probes on the chip, if

present. (b) Protocol used here, which operates with two pumps switched alternately. A pump always pushes the fluid in

the same direction or else is inactive.
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protocol is quite robust regarding variations of a (the quality of mixing is basically unchanged

if a is divided or multiplied by a factor two14). Therefore, in an experiment where the size of

the chip S, the height of the chamber h, and maybe the flow-rate q imposed by the pump are

given, it is always possible to adapt the period of the flow-field T so as to obtain an acceptable

a; note, however, that all time-scales (including the total time involved for the experiment) will

be changed in the same proportions as T. Finally, we remind that a chemical reaction is

involved in the end: it is, therefore, very important not to dilute too much the biological mate-

rial and to keep the total volume (including that of external elements such as pipes and pumps)

as small as experimentally possible.

A. Biological model

1. Probes

All probes are supposed to be identical, with height ‘p � 100 nm, and are gathered on Ns

¼ 53 spots of diameter Ls ’ 0:54 mm, distributed as shown in Figure 2; the total surface cov-

ered by the spots is, therefore, Ns � pL2
s=4. A strong difficulty is to have a good estimate for

the density of probes on a given spot. In practice, DNA chips can have a density varying from

1010 molecules per cm2 up to as high as 1014 molecules per cm2.16 Density plays, however, a

crucial role: it was shown that a too high density acted on the accessibility of the probes (steri-

cal effects), making the hybridization more difficult and, therefore, the reaction rate lower.17,18

In order to get rid of any sterical effect, we suppose that the distance between two adjacent

probes is of the same order of magnitude as the height of the probe itself, so that there is

approximately one probe for a surface ‘2
p; the density of probes is then

1=‘2
p � 1010 probes � cm�2; (3)

which is reasonable. The total number of probes Np on the chip is therefore

FIG. 2. Sketch of the chip: there are 53 round spots of targets. (a) Initial condition for the static hybridization. The reparti-

tion of targets is random. (b) Same for dynamic hybridization. The targets are initially located around the source on the bot-

tom left; only their heights z are random.
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Np ¼
Ns � pL2

s

4‘2
p

� 109 : (4)

2. Targets

All targets are also identical and complementary to the probes. The free targets are mod-

eled as punctual particles moving under the action of molecular diffusion and flow-field (the

effect of size is globally included in the molecular diffusion coefficient following the Stokes-

Einstein law). The initial repartition of targets has been chosen so as to follow as closely as

possible the experimental conditions: in the static case, where the solution is usually mixed

before being spread on the chip, the repartition is random in all three directions (Figure 2(a)).

In the case of chaotic advection, the targets are initially located around a source (Figure 2(b)),

and only their heights z are random, so as to model an experiment where they would be intro-

duced using a syringe through a source. The number of initial targets Nt0 is 40 times twice the

number of spots, i.e., 2120. It is, therefore, much less than the number of probes.

3. Interaction between targets and probes

In the DNA molecule, the link between two complementary nucleotides implies hydrogen

bounds, in which interactions are usually modeled using a Morse potential.19 For a piece of

DNA molecule, several hydrogen bounds come into play, which makes the interaction between

the target and the probe difficult to model.20 However, our problem is slightly different here:

before interacting together, the two DNA-strands have to be close enough to each other. If the

targets of our model are well-mixed in the chamber, the number of targets above a spot is

Nt0 � pL2
s=ð4SÞ � 2, and those targets are distributed on the height h: hence a given target is

generally very unlikely to be close enough to a spot so that it can feel the interaction with a

probe located at the bottom of the chamber. We, therefore, use a very simple model of particle

tracking, first introduced in chaotic advection for competing autocatalytical processes inside a

mixing domain by Metcalfe and Ottino,21 which consists of a potential of infinite depth and

given width dh: hence a target is trapped (hybridized) once it comes in a dh–vicinity of a probe

(which corresponds here to a volume of height dh above a spot of the chip). We choose the

potential width dh of the order of the size of a DNA-strand, i.e., dh ’ 100 nm� h.

B. The flow field

The flow-field inside a chamber of height small compared to the other directions (a Hele-

Shaw cell) has the remarkable property that the flow-field is horizontal almost everywhere and

that depth-average velocity-field satisfies the Euler equation. It is, therefore, easy to obtain this

quantity analytically for a source-sink inside a circle and then switch to a rectangular geometry

using a Schwartz-Christoffel transformation.22 We previously used such a 2D-model in order to

decide between different protocols and chamber geometries.14

However, such a 2D model where the depth-dependence of the velocity field is ignored

cannot be used for our purpose: in the Hele-Shaw flow, the vertical profile is parabolic, so that

the velocity vanishes on the top of the cell, but also (and more annoyingly) on the bottom

where the chip is placed. This means that a target located near the bottom of the hybridization

chamber will move much slower than one moving at half-depth. A depth-average flow would,

therefore, favor hybridization and alter the results; this is why we reconstructed the depth para-

bolic dependence as follows:

• If �vðx; y; tÞ is the depth-averaged velocity vector calculated with the 2D model, then the velocity

vector at point (x, y, z) and time t is given by

vðx; y; z; tÞ ¼ 6 �vðx; y; tÞ
h2

z ðh� zÞ : (5)

034107-4 Raynal, Beuf, and Carrière Biomicrofluidics 7, 034107 (2013)



• When a fluid particle is swallowed into a sink, it is swallowed up with a random depth, the den-

sity probability function of which follows a parabolic rule.

As a validation, we compared the results obtained with this model with those of complete

3D calculations of the Stokes equation in a square geometry, with a chaotic mixing protocol

previously studied (see details in Ref. 15): in Figure 3 are shown two Poincar�e sections for the

same case of rather bad mixing, where a large regular region (region empty of points or with

closed curves) is clearly visible, obtained by the complete 3D calculations or by our 3D model.

The similarity between both is excellent.

C. Molecular diffusion and trajectories

The total displacement of a given target is thus obtained using

dx

dt
¼ vðx; y; z; tÞ þ fðtÞ; (6)

where x(t) is the particle position at time t, v(x, y, z, t) is the 3D-modeled velocity field; fðtÞ
models the molecular diffusion and is a Gaussian decorrelated process such that hfiðtÞ fjðt0Þi
¼ 2D dij dðt� t0Þ, where D is the diffusion coefficient, dij is the Kr€onecker symbol (dij ¼ 1 if

i¼ j, zero otherwise), and d is the Dirac delta function. The trajectories are integrated using a

fourth-order Runge-Kutta method. Note that in the static case (no flow-field), v(x, y, z, t)¼ 0.

III. COMPARISON STATIC/DYNAMICAL HYBRIDIZATION

In the following, the diffusion coefficient D of the free targets is taken equal to

10�10 m2 s�1.

A. Decay of free targets

Figure 4 shows in log-lin plot the decay of free targets as a function of time, with or with-

out chaotic advection. We observe that the hybridization is much faster in the dynamical case.

Moreover, the decay is exponential with chaotic advection, as generally expected for a chemical

reaction with perfect mixing, whereas it is not exponential at short times in the static case (but

the exponential behavior is recovered at large times). We find that the hybridization is about

100 times more rapid with dynamical hybridization compared to the static case.

B. Kinetics of reaction

The kinetics of reaction is usually measured experimentally in the static case. From our

model, we want to recover the order of magnitude of the rate of reaction, assuming that the

FIG. 3. Comparison of two Poincar�e sections (the successive positions of given particles taken at each period is accumu-

lated on the section) of the same protocol15 with the same period T¼ 4 s in a square chamber. The left one is calculated

with the 3D model, while the right one results from a complete 3D calculation.
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limiting process is the time needed for a given target to approach a probe. The reaction between

a target and a probe can generally be written as

T þ P �
ka

kd

TP; (7)

where T stands for free target, P for free probe, and TP for the hybridized strand; ka is the reac-

tion rate constant for hybridization, and kd is the analogue for the opposite. In the well mixed

problem, where the concentrations of all species are uniform and equal to the mean concentra-

tions, we have23–26

� d½T�
dt
¼ � d½P�

dt
¼ d½TP�

dt
¼ ka½T�½P� � kd½TP�; (8)

where [A] stands for the concentration of species A, and we denote by ½A�0 the concentration of

A at time t¼ 0. Because of the large number of hydrogen bounds involved in the DNA strand,

the deshybridization reaction is very unlikely at temperatures involved in DNA-chips, so that

we consider that kd ¼ 0. We can, therefore, solve Eq. (8), and in the case of excess of probes

(½P�0 	 ½T�0), [P] can be considered as constant (½P� � ½P�0, and we obtain

½T� ¼ ½T�0 expð�t ka½P�0Þ : (9)

We recover an exponential decay as in our numerical simulations. Therefore, from the slope s
of Figure 4, we obtain the constant ka

ka ¼
1

s� ½P�0
: (10)

The initial volumic concentration in probes, expressed in moles per liters is

½P�0 ¼
NP

N a � S� h
; (11)

where N a is the Avogadro number. Taking N a ¼ 6:02� 1023; S ¼ 2:25 cm2; h ¼ 50 lm, we

obtain a reasonable value for ½P�0

½P�0 ¼ 1:79� 10�10 mol: l�1: (12)

FIG. 4. Decay of free targets as a function of time; blue �: static case; red þ: with chaotic advection. The diffusion coeffi-

cient is in both cases D ¼ 10�10 m2 s�1. The straight line in log-lin scale indicates that the decay is of the type expð�t=sÞ.
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From Eq. (10), we obtain ka both in the static and dynamical case

kstat
a � 106 M�1 s�1 (13)

and

kdyn
a � 108 M�1 s�1 ; (14)

where M is the usual symbol for mol: l�1. Those results are all the more interesting that, with

our very simple model, we recover the same order of magnitude for ka in the static case as the

one found experimentally by various authors!24–26 This suggests that diffusion is the limiting

process in most experiments of this kind.

C. Homogeneity

The homogeneity of hybridization is also an important criterion in those technologies

where a “large” surface is considered: the probability to end on any spot must be as uniform as

possible. Therefore, we introduce an instantaneous non-dimensional standard deviation defined

as

rðtÞ ¼ 1

Nh
t ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNs

i¼1

Nh
t;iðtÞ �

Nh
t ðtÞ
Ns

� �2

vuut ; (15)

where Nh
t ðtÞ is the total number of hybridized targets at time t, while Nh

t;iðtÞ is the number of

hybridized targets on spot i. Those two quantities are linked by the relation

Nh
t ðtÞ ¼

XNs

i¼1

Nh
t;iðtÞ : (16)

The variance in Eq. (15) is renormalized at all times by the number of hybridized targets Nh
t ðtÞ.

If all targets are hybridized on the same spot (the worst case),

XNs

i¼1

Nh
t;iðtÞ �

Nh
t ðtÞ
Ns

� �2

¼ Nh
t ðtÞ �

Nh
t ðtÞ
Ns

� �2

þ ðNs � 1Þ Nh
t ðtÞ
Ns

� �2

; (17)

¼ ðNh
t Þ

2
1� 1

Ns

� �
; (18)

and finally rðtÞ ¼ ð1� 1=NsÞ1=2 � 1. In case of perfect homogeneity (8i;Nh
t;iðtÞ ¼ Nh

t ðtÞ=Ns),

one obtains zero. Therefore, r is between 0 (perfect homogeneity) and 1 (bad homogeneity).

As can be seen in Figure 5 in log-log scale, although static hybridization is more homogeneous

at very short times, which can be explained by the fact that targets are initially well-mixed in

that case, dynamical hybridization becomes more homogeneous after only 2 periods of the

flow-field (i.e., 8 s). Those results are in accordance with the experiment performed in a proto-

type mixer, where we showed that chaotic advection improved not only the rapidity but also

the homogeneity and selectivity of hybridization.27

IV. GENERALIZATION: INFLUENCE OF dh AND D

From our theoretical results above and the experimental results, we suspect that the limiting

process for the reaction is the time taken by the target to approach the probe “close enough” so

that chemical interactions come into play. In our model, however, we supposed, quite arbitra-

rily, that the distance of interaction was dh ¼ 100 nm. How would the previous results depend
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on that parameter? Moreover, since mixing depends on the diffusion coefficient (all the more in

the static case where diffusion is the limiting process), what happens when the diffusion coeffi-

cient is varied? We performed many such different numerical experiments, with dh varying

from 25 nm up to 50 lm (the height of the chamber!) and three different values of D from

10�10 m2 s�1 up to 10�12 m2 s�1.

A. Static case

Figure 6(a) shows the typical times in the static case (no flow). The results are striking:

when only diffusion can move the targets, the rate of decay of free targets does absolutely not
depend on dh! This can be easily explained: on the one hand, the characteristic diffusion time

in the vertical direction is, from Eq. (1) with D ¼ 10�10 m2=s and height ‘ ¼ h ¼ 50 lm, of the

order of 25 s; on the other hand, the typical horizontal distance between two targets in the

well-mixed case is
ffiffiffiffiffiffiffiffiffiffiffi
S=Nt0

p
’ 300 lm, which corresponds to a typical horizontal diffusion time

900 s (and even higher if the targets are not initially well-mixed). Therefore, the limiting

process in the static case is the horizontal displacement, and we can make the rate of decay

FIG. 5. Homogeneity of hybridization; blue �: static case; red þ: with chaotic advection. The green line corresponds to 2

periods of the flow-field. The diffusion coefficient is in both cases D ¼ 10�10 m2 s�1.

FIG. 6. (a) Typical time of decay of free target s (log-log plot) in the static case as a function of dh for different values of

D. Red symbols: D ¼ 10�10 m2 s�1; green symbols: D ¼ 10�11 m2 s�1; blue symbols: D ¼ 10�12 m2 s�1; (b) decay of free

targets for the same values of D (log-lin plot) as a function of the non-dimensional time tDNt0=S (which takes into account

the initial distance between two free targets) for dh ¼ 100 nm: the three curves collapse.
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non-dimensional using the typical time S=ðNt0DÞ, as shown in Figure 6(b): the rate of decay is

directly proportional to D�1, following a diffusion process.

B. Dynamical case (with chaotic mixing)

Figure 7 shows the time of decay s in the chaotic mixing case. Once again, when consider-

ing only physically reasonable values of dh, from 25 nm up to 500 nm, the time of decay of free
targets still does not depend on dh, although, for even larger values of dh (1000 nm and higher),

as expected, targets hybridize more rapidly.

However, s is shown to depend strongly on D. We remind that mixing is characterized by

the P�eclet number

Pe ¼ q

hD
; (19)

which measures the relative time scales of displacement by the flow-field (L=U ¼ LLwh=q,

where U is the typical velocity) with that of diffusion (S/D, where S ¼ LLw). Here, the P�eclet

number varies from 4 � 105 up to 4 � 107. Therefore, using the Buckingham p theorem, we

expect s to behave like

s � L

U
f ðPeÞ; (20)

� Sh

q
f ðPeÞ; (21)

where f is a function to determine. Dealing with chaotic advection, we would expect f to dis-

play a very weak dependence in Pe, typically like logðPeÞ.28 This is obviously not the case

here. In order to explain why, and find the correct expression for f, we will try to understand

how the targets enter a volume of hybridization, as sketched on Figure 8: on the one hand, the

velocity field near the bottom is very weak and cannot explain the renewing of targets in the

interaction region (we recall that the flow-field is horizontal almost everywhere in a Hele-Shaw

flow, so that we can neglect vertical advection); on the other hand, the volume of hybridization

is very small in height, so that the typical renewing time of fluid inside the volume is governed

by the vertical diffusion, d2
h=D, which, with dh ¼ 100 nm and D ¼ 10�10 m2 s�1, is even smaller

than a millisecond (typical horizontal diffusion time is L2
s=D, which makes horizontal diffusion

FIG. 7. Typical time of decay of free target s (log-log plot) in the dynamical case as a function of dh for different values of

D. Red symbols: D ¼ 10�10 m2 s�1; green symbols: D ¼ 10�11 m2 s�1; blue symbols: D ¼ 10�12 m2 s�1.
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more than 107 less efficient than vertical diffusion)! Therefore, we must understand how fresh

fluid is brought above the spot. For this, we suppose that at a given time t, there are no more

targets above a spot (Figure 9). On one hand, the typical advection time to bring targets above

the spot at height z is Ls=vðzÞ. Since v(z) is an increasing function of z up to mid-height, the

corresponding time-scale is a decreasing function of z, and the advection mechanism is more ef-

ficient when z is increased. On the other hand, the typical diffusion time at height z is z2=D,

which is an increasing function of z. Therefore, the physically efficient value of z is def f
h , height

at which the two time-scales are equal, such that as much fresh fluid is brought above the spot

as the quantity that mixes vertically, and we have

Ls

vðdef f
h Þ
¼ def f

h
2

D
; (22)

where the parabolic profile in z (Eq. (5)) for small z implies

vðdef f
h Þ �

6 def f
h

h

q

hLw
: (23)

FIG. 8. Typical mechanisms of renewing of fluid inside the hybridization volume: advection is very weak near the bottom,

while the very small height of the volume allows a good vertical exchange of fluid by molecular diffusion.

FIG. 9. Top: at a given time t, we suppose that there are no more targets above a spot. At a time t0 > t, when considering

the sole action of advection, some targets have been moved above the spot by the velocity field; they can be brought back

inside the hybridization volume by molecular diffusion.
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We, therefore, obtain

def f
h

3 ¼ Ls h Lw

6 Pe
; (24)

and finally

def f
h ¼ def f

h;0 Pe�1=3 ; (25)

with

def f
h;0 ¼

Ls h Lw

6

� �1=3

: (26)

Since we have an exponential decrease of the number of free targets Nt, we can write

� 1

Nt

dNt

dt
¼ 1

s
¼ 1

sef f

Vef f

Vtotal
; (27)

where sef f ¼ def f
h

2=D is the characteristic time of renewing of fluid above a spot, and Vef f is

the corresponding effective volume above all spots, i.e., Vef f ¼ Ns def f
h pL2

s=4. From Eqs. (24)

and (27), we get

s � def f
h

2

D

4� 1:2 LLw h

Ns pL2
s def f

h

; (28)

� def f
h

q

hD

8:4 LLw h2

Ns pL2
s q

; (29)

� s0 Pe2=3; (30)

with

s0 ¼
8:4 h7=3 L4=3

w L

61=3Ns pL
5=3
s q

: (31)

Therefore, using Eqs. (25) and (30), Figure 7 can be plotted using s=s0Pe�2=3 as a function of

dh=def f
h;0 Pe1=3. This is done in Figure 10: in the horizontal scale, the plateau extends up to values

of dh=def f
h;0 Pe1=3 of order 1, while it corresponds roughly to a value of 1 in the vertical scale

dh=def f
h;0 Pe1=3. This is in accordance with the mechanism presented above, and, because fresh

fluid is brought in the interaction zone by vertical diffusion in the end, the function f in Eq.

(21) is an algebraic function and not a logarithm function. This explains why dh plays no role

in the result, in accordance with the idea that the detailed structure of the interaction potential

plays little role in the particle dynamics. This also explains why the gain in hybridization veloc-

ity when comparing static and dynamical hybridizations is lower than the gain found in mixing

time with our 2D model (mixing about 1000 times more rapid in the dynamical case,14 while

we have a factor 100 “only” here): although the horizontal dispersion is 1000 times more rapid

at mid-height, the fresh fluid is brought to the bottom by molecular diffusion only.

We also checked the dependence of s in Ls (diameter of the spots). This is done in Figure

11 in the case D ¼ 10�10 m2 s�1 and dh ¼ 100 nm: clearly, s depends on L�5=3
s , as found in

Eq. (31), which is very important in practice concerning this technology.
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V. CONCLUSIONS

In this paper, we numerically compared static hybridization with hybridization when cha-

otic advection is involved. The flow-field is a periodic flow in a rectangular chamber of small

height. Our numerical model is very simple: the targets are supposed to be passive scalars that

move inside the hybridization chamber thanks to the velocity field and molecular diffusion. The

hybridization occurs as soon as a target comes inside a hybridization volume of height dh above

a spot of probes (capture model). The velocity field is reconstructed in volume starting from a

2D model that enables to find it analytically, which makes it easier to integrate and follow the

targets.

We checked numerically and explained why the exact knowledge of the details of interac-

tion (here the distance of interaction dh) plays almost no role in the results. We also showed

FIG. 10. Non-dimensional s (log-log plot) in the dynamical case using Eq. (30) as a function of non-dimensional dh using

Eq. (25) for different values of D from 10�10 m2 s�1 up to 10�12 m2 s�1 (same as in Fig. 7). The values of def f
h;0 and s0 are

given, respectively, in Eqs. (26) and (31). The three sets of points collapse on the same curve.

FIG. 11. s (log-log plot) in the dynamical case as a function of the diameter of the spots Ls; the fit is a power law with slope

�5/3.
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that with our model, hybridization is about 100 times more rapid than the usual static hybridiza-

tion, in accordance with our previous experimental results. We then estimated the kinetics of

reaction: our numerical results in the static case are in total agreement with the experimental

results in the literature, suggesting that most authors calculate the time needed by the target to

approach the probe under the sole action of molecular diffusion, rather than the reaction rate

itself. We, therefore, suggest that the kinetics of reaction should always be measured experi-

mentally in a dynamical case, rather than using static hybridization, as done until now.

Moreover, we show that even when chaotic advection is involved, targets are brought

inside the hybridization volume thanks to molecular diffusion in the end, which explains why

we observe an algebraic (rather than logarithmic) dependence on the P�eclet number. We explain

theoretically this dependence, together with the fact that the value of dh plays no crucial role in

our model.
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