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Flows in Hele-Shaw cells are generally laminar, and can be in a first approximation considered as
quasi-two-dimensional. Therefore, the only way to mix efficiently inside the cell is to generate a periodic
flow and thus create chaos. Here we study the influence of the geometry of the cell on mixing efficiency:
to this aim, we use three different geometries of the cell (circle, square and rectangle) and we numerically
test them by using two protocols of mixing: the first protocol uses syringes, the second uses pumps. In a
view of simplicity, this Hele-Shaw flow is modeled as two-dimensional, allowing us to analytically deter-
mine the velocity field corresponding to the different shapes. The results are then analyzed in terms of
Poincaré sections (appearance, filling rate, and homogeneity), and the Lyapunov exponents are calcu-
lated. We numerically show that the rectangular geometry leads to a better mixing, but also that the
aspect ratio of the rectangle plays unexpectedly no important role on mixing.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Microfluidic devices are widely used in nowadays’ biotechnol-
ogy, for applications ranging from transport of material in
microchannels, sorting of cells, DNA analysis, etc. When chemical
reactions come into play (e.g. in many such systems), efficient mix-
ing is required in order to homogenize the solution, so as to favor
the meeting of reactants. However, the Reynolds number of flows
at the microscale are small, generally of the order of unity or smal-
ler, so that Stokes flows should be commonly expected [1].

It is now well-known that chaotic advection is the best way to
mix efficiently in laminar flows [2–5], all the more reason for
microfluidic flows. Stroock et al. proposed a famous chaotic mixer
adapted to microdevices, the so-called staggered herringbone mix-
er (SHM) [6], dedicated to mixing in microchannels. A typical
microchannel has height and width of the order of 50–100 lm,
and length of a few centimeters, i.e. two small dimensions and
the third one large compared to the others. In a smooth channel
the mixing of material between streams in the flow is purely diffu-
sive, so that the length of channel required for mixing can be pro-
hibitely long. The SHM consists in adding specific bas-relief
structures (ridges) on the floor of the channel, leading to chaotic
trajectories; the mixing length is therefore greatly reduced. In this
paper, we deal with mixing in a different microfluidic configura-
tion, the Hele-Shaw flows, where the height is small (typically
25–50 lm) and the length and width are ‘‘large”, of the order of
the centimeter.
ll rights reserved.
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Hele-Shaw flows can, in a first approximation, be considered as
two-dimensional. In those conditions, the only way to achieve cha-
otic advection is to make the flow non-stationary; indeed, time-
periodicity is enough.

We previously proposed two time-periodic protocols of mixing,
one using two pairs of syringes, the other operating with pumps,
and showed that they could exhibit chaotic trajectories in a square
geometry [7,8]. Other chaotic protocols in a Hele-Shaw cell were
proposed by two other teams: McQuain et al. [9] proposed a stirring
protocol using pulsed pairs of syringe-driven source–sink systems in
a rectangular chamber and tested it in a view of DNA chip hybridiza-
tion: they showed that hybridization was significantly improved;
then Stremler et al. [10,11] carried out the 2D mathematical analysis
of mixing in their flow while the experimental analysis was done by
Cola et al. [12]. Another work of importance was done by Hertzsch
et al. [13] who showed that flows generated by pulsed source–sink
pairs could be studied as linked twist maps; therefore they could re-
late the flow to mathematically precise notions of chaotic mixing,
and proposed a new design to generate a well-mixed flow; they
compared our protocol A, together with the protocol by Stremler
et al., with their new protocol and showed that their protocol, which
has mathematical properties in favor of better mixing, was indeed
best in a circular geometry (see also Sturman et al. [14] for more de-
tails on the mathematical background).

The idea of this paper is not to compare all the protocols of stir-
ring proposed in the literature for Hele-Shaw cells, but to test
whether or not the shape of the chamber influences the quality
of mixing. To this end, we use our two previous protocols [7,8],
which have been shown to exhibit very different mixing abilities.
Fluid flow is created thanks to four vertical pipes located near
ifferent geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Nomenclature

c distance from the center to a corner (square and rectan-
gle)

D diffusion coefficient
h height of the Hele-Shaw cell
hK Kolmogorov entropy
i natural base of complex numbers
KðkÞ Jacobi function
L side of a square chamber
Pt¼t0 Poincaré section for initial time t0

q flow-rate
R radius of the circular cell
S surface of the horizontal section of the cell
t time
T period of the flow-field
T� dimensionless period of the flow-field

w parameter measuring the distance between a point and
the center

wcðzÞ complex velocity field at complex point z
x, y coordinates in a plane
z complex coordinate, z ¼ xþ iy
a dimensionless pulse volume
b parameter for the position a source with respect to the

center
c aspect ratio parameter for the rectangle
k Lyapunov exponent
l fraction of covered area
s(w) function for the time needed for a point to go from

source to sink
n intermediate parameter
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the corners, which inject or extract fluid, and therefore act as
sources or sinks. Indeed, those protocols can be considered as vari-
ants of the pulsed source–sink chaotic mixer first proposed by
Jones and Aref [15].

1. The first protocol (called protocol A in the following) relies on
periodic injection of fluid thanks to four reversible syringes: dur-
ing one period T, four steps of same duration occur (Fig. 1(a)).

2. The second protocol (protocol B) operates with two mono-
directional pumps switched alternately. For this protocol, only
two steps of same duration occur during T (Fig. 1(b)).

In all the following, like in our previous works [7,8], the flow
rate q, the height h, and the horizontal section S are chosen such
that q=hS ¼ 0:18 s�1; the shape of the cell is whether a circle, a
square of side L (like in our previous works), or a rectangle of lat-
eral sides cL and Lc, where we took different values for c > 1, so
that the total surface is, in all cases, equal to S.

2. Numerical tools

2.1. Numerical model

The velocity field is modeled as purely two-dimensional in a first
approximation, using the depth-averaged horizontal velocity field,
Fig. 1. (a) Alternating injection scheme for protocol A. Each quarter-period step of the pr
in steps 2 and 4), the two other ones being inactive. (b) Same for protocol B. Each half-p
pump always pushes the fluid in the same direction, or else is inactive. Note: the DNA c

Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in
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which, in a Hele-Shaw flow, satisfies the Euler equation. Indeed,
the aim of this work is to test the influence of the shape of the do-
main, and for this purpose such a 2D model is much more flexible
than the calculation of the whole 3D flow, for which a change of
geometry requires a new computational grid, together with heavy
calculations. In our case the flow between a source and a sink is
calculated analytically in a circular geometry using the Milne-
Thomson theorem [16]. It is then very easy to obtain the flow in
the square or rectangular geometry using a Schwarz–Christoffel
transformation [16]. All the analytical details of the 2D calculations
are given in Appendix A. The streamlines obtained with our model
for a source–sink flow are shown in Fig. 2 for different geometries
of the chamber. The trajectories are calculated thereafter using a
standard fourth order Runge–Kutta integration. Like in the 3D sim-
ulations, our calculations have been performed without taking into
account molecular diffusion.

In our 2D model, we impose that a particle entering in a sink
reenters the flow domain on the same streamline. The underlying
aim is to avoid adding artificial mixing other than that imposed
by chaotic advection. With this hypothesis, a fluid particle at a gi-
ven location at the end of an injection/extraction stage of protocol
A, which is swallowed inside a pipe during the next stage comes
back at exactly the same location when the sink is turned again
into a source. In a laboratory experiment or in the 3D calculations,
however, the flow-field is not expected to be exactly zero in the
otocol involves two opposite syringes (the black ones in steps 1 and 3, the grey ones
eriod step of the protocol involves one of the pumps, the other being inactive. One
hip is symbolized by the central black square.

different geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 2. Streamlines for a source–sink flow in the different geometries of the chamber.
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non-active pipes: because of the flow inside the cell, friction causes
in those pipes the formation of a large sequence of eddies, each
exponentially weaker than its predecessor as height grows
[17,18]. Of course this effect is very weak; but since the stream-
lines are very tight inside an active pipe, a change in a fluid particle
location during the ‘‘inactive” stage, leads the fluid particle to come
back nearly, but not exactly at the same location. Even though this
effect is small, it may affect regular regions visible on the 2D Poin-
caré sections after integration of fluid particle trajectories on very
long times, as we will see later. Therefore, because our 2D model
neglects the weak mixing inside the non-active pipes, it is likely
to mix less than in reality.

Note that long time integration of trajectories is also more easily
available with the 2D model than with a 3D flow on a computa-
tional grid, since the probability that a fluid particle ends on a
boundary is very low in the former case: first the flow-field is
known analytically, and therefore satisfies exactly the incompress-
ibility constraint, and second the velocity, which is a solution of the
Euler equation, is not zero on the boundaries.

2.2. Correspondence between parameters from different authors

It is clear that the efficiency of mixing does not depend on the
value of the Reynolds number inside the pipes and inside the
chamber, as long as it remains small. Therefore, for a given geome-
try and a given protocol, the important non-dimensional parameter
is the dimensionless pulse volume a:

a ¼ qT
hS
; ð1Þ

which represents the volume of fluid displaced during one period
compared to the volume of the chamber. Although a is defined
for the 3D flow, one can easily switch from volumes to surfaces
by dividing by the – constant – height h of the chamber. Therefore,
a can be used identically as its 2D equivalent, the dimensionless
pulse area, equal to the surface of fluid displaced during one period
compared to the surface of the chamber.

In a view of comparison with our previous works where we
used the dimensional period of the flow T instead of a, note that
those two parameters are linked by the relation a = 0.18T (T in s)
with our set of parameters.

While Stremler and Cola also used a, Hertzsch et al. used a non-
dimensional period – denoted here T� – defined as T� ¼ qT=2pa2,
where the distance between the source and the sink is equal to
2a; in their simulations, the radius of the circular chamber is equal
to R, chosen as R ¼ 2a, which leads to the relation a ¼ T�=2.

2.3. Tools of chaos

Mixing efficiency is then analyzed with the usual tools of chaos:
Poincaré sections and Lyapunov exponents. In a time-periodic flow,
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in d
doi:10.1016/j.ijheatmasstransfer.2009.10.024
the Poincaré section of a given trajectory is obtained by plotting on
the same graph all the positions of the initial point taken every per-
iod. A good mixing is obtained when the Poincaré section of a sin-
gle trajectory covers the whole surface, in the most homogeneous
way and the smallest period possible.

Mixing can also be analyzed quantitatively using the Lyapunov
exponent k, expressed in s�1, which measures the asymptotic
exponential stretching between two nearby trajectories (rate of
separation). Classically in a 2D incompressible flow, the sum of
the two Lyapunov exponents is zero, so that we only need to calcu-
late the largest Lyapunov exponent (in opposition to our previous
works in 3D flows where we determined the three Lyapunov expo-
nents [19]). We check that the calculation is sufficiently converged
by taking different initial points inside the stochastic region; the
simulation is stopped when all Lyapunov exponents have con-
verged towards the same value.

In the square and rectangular geometry, it is also possible to cal-
culate the ‘‘filling rate” of the Poincaré section, i.e. the fraction of
surface covered, so as to obtain a quantitative rather than visual
information (for a discussion on how to measure the filling rate
of an ensemble of points, see [20]). We can therefore investigate
the use of the topological or Kolmogorov entropy hK through the
same estimation as Stremler and Cola [11], as the product of the
fraction of the phase space covered by a single chaotic trajectory
multiplied by the corresponding Lyapunov exponent (see [21, Sec-
tion Definitions and basic concepts, p. 305]). Mixing is supposed to
be all the more efficient as the topological entropy is high.

2.4. Validation of the 2D model

It is important first to validate the 2D model properly. Indeed,
our 2D model uses the depth-averaged horizontal velocity field,
whereas the horizontal velocity profile is almost everywhere para-
bolic. This implies that a fluid particle located at middle-height
moves faster than what we compute, while another one located
for example near the bottom can be much slower. Therefore, we
could fear some important discrepancies between our 2D results
and our 3D calculations.

Note also that, since a Poincaré section accumulates the posi-
tions of a fluid particle after each period, and since a fluid particle
can change depth, the 3D Poincaré section is a 3D set of points, and
a regular region is likely to be hidden by points located above and
below this region (corresponding to points with different veloci-
ties), which is not possible in the 2D case.

In Fig. 3 are compared 3D (left) and 2D (right) Poincaré sections,
together for protocol A for three values of a, and for protocol B for a
very small a – the comparison for protocol B and large values of a
is of little interest, since points are almost randomly spread in the
whole domain.

Concerning protocol B (Fig. 3(a) and (b)), the matching is very
good. For protocol A a = 0.36 (Fig. 3(c) and (d)), the situation is also
ifferent geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 3. Comparison between Poincaré sections with 3D velocity flow (left) and 2D
model velocity flow (right). (a) and (b) Protocol B, a = 0.09; (c) and (d) protocol A,
a = 0.36; (e) and (f) protocol A, a = 0.72; and (g) and (h) protocol A, a = 1.8.
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Fig. 4. Comparison of Lyapunov exponents from 2D and 3D calculations in the
squared geometry. (h) protocol A, 2D calculations, (j) protocol B, 2D calculations.
The lines correspond to the Lyapunov exponents obtained in our previous work
with complete 3D calculations [8]: (� � � � � �), protocol A; (—) protocol B.
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very similar: the peripheral region of the domain, more dense, cor-
responds to a chaotic zone, while the region inside is a nearly reg-
ular region For protocol A, a = 0.72 (Fig. 3(e) and (f)), the chaotic
area (area full of points) and large regular island (empty area or
area having ‘‘elliptical trajectories”) have comparable shape, size,
and location. The regular islands located around the large one are
very thin, and therefore can hardly be detected in the 3D calcula-
tions, as explained before.

For larger values of a (for instance a = 1.8 in Fig. 3(g) and (h)),
some very large regular regions are present in the 2D case, that
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in
doi:10.1016/j.ijheatmasstransfer.2009.10.024
are not visible in the 3D case. At first sight, the correspondence
may appear quite bad. However, a careful analysis shows that
the 2D Poincaré section is indeed informative in the present case:
let us consider the large island which repeats identically at three
occurrences in the section (bottom, right and top, denoted by re-
gions A, B and C in Fig. 12). A point in one of these islands is in fact
a periodic point, and enters and leaves the different pipes eight
times before it comes back to its initial position seven periods later,
see Appendix B (we remind that a complete period is made of four
stages). As explained before, some mixing occurs inside the pipe,
even when non-active. This explains why these zones are not vis-
ible in the 3D section.

The trapezoidal-shaped island on the left is, on the other hand,
never swallowed inside a pipe, but moves in the domain with time
(this is indeed the same regular region as the large island seen in
Fig. 3(f) and at the middle of Fig. 3(d), which grows in size and is
slightly displaced towards the left with increasing period). There-
fore, we should expect a fluid particle trapped inside this region
to remain there for many periods before leaving; this is indeed
the case, as can be seen in Fig. 3(g), where a curve corresponding
to the trapezoidal area is visible. It is also noticeable that both this
region and the central region are less visited than the rest of the
domain (less points in the section), in accordance with the corre-
sponding regular regions in the 2D section (Fig. 3(h)). Therefore,
even in this case, we recover special features of the 2D section in
the 3D calculations. Note that in a real experiment, because of
molecular diffusion, the mixing will be even more rapid than in
the 3D calculations.

Since we present Lyapunov exponents as a quantitative tool, we
could wonder whether the hypothesis of a quasi-2D flow does not
alter quantitatively this parameter. In Fig. 4 are presented with
symbols the Lyapunov exponents obtained with our model flow
versus the dimensionless pulse area a. As a view of comparison
are plotted with lines the results obtained with the full 3D calcula-
tions in a square chamber [8]; the dotted line corresponds to pro-
tocol A and is to be compared with the empty square symbols (2D
flow), while the solid line (protocol B) shall be compared with the
full square symbols: somewhat surprisingly, the comparison
shows almost perfect matching, except for very small values of a,
when the horizontal dispersion by the flow is weak, so that 3D ef-
fects cannot be neglected anymore.

We therefore conclude that this 2D velocity field model is
adapted for a complete study of the problem.
different geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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3. Results

3.1. Poincaré sections and Lyapunov exponents

Poincaré sections are usually the most straightforward tools for
characterizing chaos, because of the visual information they
provide. In Figs. 5 and 6 are shown Poincaré sections of protocols
A and B, respectively, for three values of a, namely a = 0.18,
a = 0.72 and a = 1.8 (corresponding to the periods T ¼ 1 s; T
¼ 4 s and T ¼ 10 s from our previous work).

The circular, square or rectangular domains have been plotted
with the same area so as to be able to compare them visually –
in the case of the circle, although this is not obvious, we indeed
have S ¼ pR2 ¼ L2, with R the radius of the circle, which implies
that the diameter is 2R=L ¼

ffiffiffiffiffiffi
4p
p

’ 1:13. As expected [8], we re-
cover with our 2D model that mixing is much more efficient with
protocol B compared to protocol A in the square geometry; this re-
sult can obviously be extended to different geometries of the
chamber.

A more surprising result is the influence of the geometry of
the chamber: the fact is not straightforward concerning protocol
Fig. 5. Poincaré sections: comparison circular/squared/rectangular geometry of the ch
(bottom).

Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in d
doi:10.1016/j.ijheatmasstransfer.2009.10.024
B, since mixing is quite good, even if not perfect in the square
geometry (some small regular regions still persist, Fig. 6(e) and
(h), but which are much too small to be seen in a 3D computa-
tion or an experiment). However, mixing is as good in the rect-
angle as in the circle. The results are much more striking
concerning protocol A, since mixing is not very good, neither in
the circle nor in the square: the very robust regular region for
protocol A, a = 0.72, seen in the 3D or 2D calculations (Fig. 3(e)
and (f)) of the square geometry, also present in the circular
geometry (Fig. 5 (d)), has totally disappeared in the rectangular
geometry. For the largest value of a studied, a = 1.8 (also protocol
A), the very large islands seen in the circle and the square
(Fig. 5(g) and (h)) have a much more limited extent in the rect-
angular geometry. In fact, we performed many 2D calculations,
but we could hardly find cases with regular regions (except for
protocol A and large values of a, where a fluid particle at the
center is always swallowed into a sink after a source/sink phase,
and always comes back to its initial position when the sink is
turned into a source again) – although we will show two partic-
ular cases (one for each protocol) where some small islands are
indeed still present.
amber with protocol A (syringes) for a = 0.18 (top), a = 0.72 (middle), and a = 1.8

ifferent geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 6. Poincaré sections: comparison circular/squared/rectangular geometry of the chamber with protocol B (pumps) for a = 0.18 (top), a = 0.72 (middle), and a = 1.8
(bottom).
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We wanted to know whether the fact that mixing was best in
the rectangular geometry was robust with respect to the aspect ra-
tio of the rectangle, or else if the 2:1 aspect ratio was a particular
case: in Fig. 7 are shown different Poincaré sections, for the same
case protocol A, a = 0.72, from the square geometry to rectangles
with aspect ratios ranging from 3:2 to 4:1. In all rectangular Poin-
caré sections, the regular island is not present (although all of them
present the same star-shaped region where the repartition of
points is not completely homogeneous), as if the topology of chaos
did depend much on the geometry (circular, square or rectangular)
but not on the aspect ratio of the rectangle either. A similar conclu-
sion can be drawn when looking at Fig. 8, where the small regular
islands seen both for protocol A with a = 1.44 or protocol B with
a = 1.8 are topologically similar in the 2:1 and 3:1 rectangles.

We could calculate the Lyapunov exponent for both protocols
and each geometry (circle, square, rectangle 2:1). The results are
shown in Fig. 9, where the black symbols represent protocol B,
while the empty symbols are for protocol A: surprisingly, although
the Lyapunov exponent depends much on the protocol, it seems
not to depend much on the geometry – it is slightly above in the
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in
doi:10.1016/j.ijheatmasstransfer.2009.10.024
rectangular case for a < 1.44, but is also slightly below for
a > 1.44, although the Poincaré sections always show a much bet-
ter chaos. Moreover, the maximum of the Lyapunov exponent (the
smallest value of a tested, a ’ 0.045 for protocol B, and a ’ 0.09 for
protocol A) is not representative of a good mixing: the stirring is
important, but in a restricted chaotic domain. We can conclude
that the Lyapunov exponent is quite robust with respect to the pro-
tocol; however, as expected the Lyapunov exponent is not the rel-
evant quantity to decide between different geometries.

3.2. Topological entropy

As mentioned at the end of the previous section, there is a need
to find a different quantitative parameter which could help decide
on whether the rectangular geometry indeed leads to more effi-
cient mixing than square or circular shapes. We propose to try to
use the topological entropy, calculated as the fraction of surface
covered by a single trajectory, multiplied by the corresponding
Lyapunov exponent [21]. As seen before, the Lyapunov exponent
depends poorly on the geometry of the chamber, so that the
different geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 7. Comparison of different aspect ratios from squared to rectangular geometry, for protocol A, a = 0.72: (a) square; (b) rectangle 3:2; (c) rectangle 2:1; (d) rectangle 3:1;
and (e) rectangle 4:1.

Fig. 8. Poincaré sections: comparison 2:1/3:1 rectangular chamber for protocol A with a = 1.44 ((a) and (b)), protocol B with a = 2.52 ((c) and (d)). We chose in purpose cases
where small regular regions did exist.
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topological entropies for different geometries should follow more
or less the behavior of the filling rate of the sections. However,
for very small values of a the filling rate is low, even for protocol
B, while for the same protocol the Lyapunov exponent is a decreas-
ing function of a (Fig. 9); therefore we could wonder whether the
product of the filling rate by the Lyapunov exponent would present
a maximum that could be interpreted as an indicator of the opti-
mum of a.

In Fig. 10(a) is shown the filling rate of the Poincaré section as a
function of the dimensionless pulse area a, for both protocols in the
square and rectangle 2:1, calculated using a single fluid particle
followed for 10,000 periods. In accordance with the aspect of the
Poincaré section, the filling rate is nearly always higher in the rect-
angular geometry. When multiplied by the Lyapunov exponent, the
topological entropy is obtained, as shown in Fig. 10(b): concerning
protocol B, no maximum was found, neither in the square nor in
the rectangle; as for the Lyapunov exponent, the quantity is
decreasing with increasing a, greater for the rectangle than for
the square for a < 1.44, and lower thereafter. It is clear though that
the smallest values of a are not those associated with the best
chaos, as seen in Fig. 6(a)–(c) for protocol B, a = 0.18. In the case
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in d
doi:10.1016/j.ijheatmasstransfer.2009.10.024
of protocol A, however, a maximum exists for the topological en-
tropy, located at a ’ 0.36 for the square (which corresponding
Poincaré section can be seen in Fig. 3(d)), and a ’ 0.72 for the rect-
angle (Fig. 5(f)). This may indeed correspond to an optimal period
for mixing in the rectangle, but inspection of Fig. 3(d) reveals that
this is not obvious in the case of the square. Moreover, the topolog-
ical entropy does not differ much from square to rectangle,
although the filling rate proves that chaos is much more extended
in the rectangle for this protocol. Therefore, the use of the topolog-
ical entropy, even if giving some interesting quantitative informa-
tion, is not totally convincing.
4. Discussion

The protocols have approximately the same symmetries for
the different geometries: in the case of protocol A the equations
of the trajectories in the 2D or 3D flow are invariant under the
change of variables t ! �t; x! x; y! �y; z! z. This implies
that the Poincaré sections Pt¼0, corresponding to the accumulated
periodic positions of particles, starting at t ¼ 0, are invariant un-
ifferent geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 10. (a) Filling rate l and (b) topological entropy hK ¼ l� k (in s�1) as a
function of a. Full symbols: protocol B; empty symbols: protocol A. Squared
symbols: squared geometry; triangles: rectangular geometry. Therefore, (O)
rectangle + protocol A, (.) rectangle + protocol B, (h) square + protocol A, and (j)
square + protocol B.
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Fig. 9. Lyapunov exponent k. Full symbols: protocol B; empty symbols: protocol A.
Squared symbols: squared geometry; circles: circular geometry; triangles: rectan-
gular geometry. Therefore, (O) rectangle + protocol A, (.) rectangle + protocol B,
(h) square + protocol A, (j) square + protocol B, (�) circle + protocol A, and (�)
circle + protocol B.
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der reflection in the plane y ¼ 0. In the square, a translation in
time t ! t þ T=4 leaves the flow unchanged after rotation of an-
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in
doi:10.1016/j.ijheatmasstransfer.2009.10.024
gle �p/2, and the Poincaré section Pt¼T=4 is obtained from the
Poincaré section Pt¼0 by a rotation of angle �p/2; this is of
course not true anymore in the rectangle, but if now we consider
the translation in time t ! t þ T=2, two consecutive rotations of
angle �p/2 are equivalent to a rotation of angle p, which is also
a point symmetry. One can check that this last symmetry is also
present in the rectangular geometry. In the case of protocol B,
the invariance of particle trajectories under t ! �t; x
! �x; y! y; z! z implies that the Poincaré sections Pt¼0 are
invariant with respect to reflection in the plane x ¼ 0. The trans-
lation in time t ! t þ T=2 leaves the flow unchanged after reflex-
ion in the plane y ¼ 0, which implies that the Poincaré section
Pt¼T=2 is, in all the geometries studied here, obtained from the
Poincaré section Pt¼0 by reflection in y. Therefore, the improve-
ment of results seen in the Poincaré sections in the rectangle
does not result from a breaking of symmetry in the combined ef-
fect of protocol and new geometry.

Recently, Hertzsch et al. showed that flows generated by
source–sink pairs could be studied as ‘‘Linked Twist Map” (LTM)
[13]. The central idea of their paper was to construct crossed peri-
odic flows having properties as close as possible to those of an ideal
model, i.e. (I) crossing of streamlines as orthogonal as possible, and
(II) velocity field as close to monotonous as possible. We propose to
test properties (I) and (II) on our different geometries.

In Fig. 11 are shown superimposed streamlines for the two
source–sink pairs for the different geometries. In all cases the
streamlines are close to tangential near the boundaries. In the cen-
tral region, however, the greatest transversality is found in the cir-
cular and square geometry, where streamlines are close to
orthogonality, whereas mixing is much more efficient in the rect-
angle. In the case of the rectangle 3:1 (Fig. 11(d)), the situation is
even worse, since the streamlines in the central region are nearly
tangential. Loss of transversality works here in favor of mixing,
rather than against it.

We now try to find out whether the flow-field in the rectangular
geometry is more monotonous than in the square or the circle. It is
quite difficult to compare velocity profiles since the flow is not uni-
directional, but we can compare the time needed to go from the
source to the sink on each streamline instead. To this end, let us
come back to Fig. 2 where streamlines of a source–sink pair are
shown for the different geometries: for a given phase with a
source–sink pair, let us consider the segment joining the two other
corners, that we will chose as our axis of reference. We graduate it
from�c to +c, where c is the distance from the center to one corner,
and we denote by s(w) the time needed to join the sink starting
from the source ð�c 6 w 6 cÞ. In the circle and the square, the
streamlines are symmetric with respect to any line joining a source
and a sink; therefore s(w) is a symmetric function, and is abso-
lutely not monotonic. In the off diameter source–sink model pro-
posed by Hertzsch et al. in a circle [13], s(w) is dissymmetric,
and much closer to a monotonic function. In the rectangle, how-
ever, although the two symmetries with respect to the lines joining
a source–sink pair do not hold, the streamlines are clearly symmet-
ric with respect to the center. This implies that s(w) is, as for the
circle or the square, a symmetric function, therefore not monotonic
either.

We conclude that the only reason for the improvement of mix-
ing in the rectangular geometry is the loss of symmetry of the
streamlines themselves. The line joining the source and the sink
is no more a streamline of the corresponding flow. Instead, the
streamline that goes through the center point wanders from one
side of this line to the other, all the more as the rectangle has a
large aspect ratio. This last point could explain also why, although
superimposed streamlines are even more tangential when the as-
pect ratio of the rectangle is increased, mixing remains good, and
the Poincaré section mostly unchanged.
different geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 11. Superpositions of streamlines created independently by the two source–sink pairs.
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5. Summary and conclusion

In this paper, we tested the influence of the geometry of
Hele-Shaw cells on the quality of chaotic mixing, using two dif-
ferent mixing protocols that relied on chaotic advection. In a
view of fast design, we used a 2D model consisting in the
depth-average velocity field: it could be easily calculated analyt-
ically for a source–sink flow, first in a circle, and in a square or
rectangle thereafter with a Schwarz–Christoffel transformation.
The model was validated using various Poincaré sections in a
square, that qualitatively matched our previous 3D calculations.
As a more quantitative tool, 2D and 3D Lyapunov exponents
were also compared, with good agreement. We thus could show
that mixing in the rectangular geometry was nearly always best
(better filling of the Poincaré sections, usually higher Lyapunov
exponents, higher topological entropy), whatever the protocol
used. The result did not depend much on the aspect ratio of
the rectangle.

We tried to find out whether the improvement in mixing in the
rectangle could be relied to loss of symmetry in the protocols com-
pared to squared or circular geometry, with no success. Then we
searched for properties proposed by Hertzsch et al. in order to ap-
proach more ergodic systems, namely increase in transversality of
superimposed streamlines, and monotonicity of the velocity pro-
file, but this study revealed that the profile was no more mono-
tonic in the rectangle than in the square or the circle, and that,
on the contrary, the streamlines were even less perpendicular.
We then concluded that the only reason for this improvement
was the loss of symmetry in the streamlines for a source–sink flow
in the rectangular geometry: whereas in the square or the circle
the streamlines have two axes of symmetry, in the rectangle only
a point symmetry remains. More specifically, the straight line join-
ing the source and the sink is no more a streamline in the
rectangle.

This improvement in mixing in the rectangular geometry
is all the more important in practice as a straightforward appli-
cation of mixing in Hele-Shaw cells is the enhancement of reli-
ability of DNA chips technology, and that most DNA chips are
manufactured on microscope lids, which have a rectangular
shape.
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in d
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Appendix A. Velocity field

In order to obtain the flow in the squared or rectangular do-
main, the velocity field is first easily calculated in a circular cham-
ber using the Milne-Thomson theorem. Let vxðx; yÞ and vyðx; yÞ the
components of the velocity-field at point ðx; yÞ. The complex veloc-
ity-field wcðzÞ is

wcðzÞ ¼ vxðx; yÞ � i vyðx; yÞ; ð2Þ

where i is the natural base of complex numbers, defined as i2 ¼ �1,
and z ¼ xþ i y. In a circular cavity of radius R, the flow of rate q cre-
ated by one pair source/sink in opposition at length bR from the
center of the cavity is:

wcðzÞ ¼
q

2p
1

zþ bR
� 1

z� bR
þ 1

zþ R=b
� 1

z� R=b

� �
: ð3Þ

Then a Schwarz–Christoffel function g, adapted to the transforma-
tion of a circle into a square or rectangle, is calculated [16,22]: let
k and n be solutions of equation:

KðkÞ
a
¼

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p� �
b

¼ n
2
; ð4Þ

where K is a Jacobi function [23] and a and b the lengths of sides of
the squared (or rectangular) cavity. Then g is defined as:

gðzÞ ¼ snðnz=2; kÞdnðnz=2; kÞ
cnðnz=2; kÞ ; ð5Þ

where sn, cn and dn are elliptical functions [23].
Finally, the velocity field wrðzÞ inside a square (or rectangular)

shape is defined as:

wrðzÞ ¼ wc gðzÞð Þ � dg
dz
: ð6Þ
Appendix B. Study of the period-7 periodic point in Fig. 3(d)

We describe here briefly how the regular region that wanders in
the whole squared domain in Fig. 3(d) returns to its initial position
after 7 periods, while only three identical regions are seen on the
ifferent geometries of Hele-Shaw cells, Int. J. Heat Mass Transfer (2009),
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Fig. 12. Sketch of the velocity field for the Poincaré section corresponding to
protocol A, a = 1.8 in the square: during stage 1 (respectively, 2, 3 or 4), the sink is
the hole located at cross I (respectively, II, III or IV), the source is the hole located at
the cross at the opposite corner.
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Poincaré section. Consider Fig. 12: crosses I, II, III and IV represent
the pipes. Protocol A consists in four stages per period; during the
first one, denoted by stage 1 (respectively, 2, 3 and 4), the active
couple is I and its opposite hole, the sink being I (respectively, II,
III and IV). For this set of parameter, a fluid particle located in reg-
ular region A (respectively, D) is mapped into B (respectively, C)
during this stage, and a fluid particle located at B or C is swallowed
into pipe I. We remind that a fluid particle swallowed into a pipe
comes back at the same location when the sink is turned into a
source again. We can therefore follow a fluid particle initially in
regular region A, knowing that each period is composed of the four
stages 1, 2, 3 and 4.

First period: A ? B ? pipe II ? pipe II ? B.
Second period: B ? pipe I ? pipe I ? B ? C.

Third period: C ? pipe I ? pipe I ? C ? pipe IV.
Fourth period: pipe IV ? pipe IV ? C ? D ? pipe IV.
Fifth period: pipe IV ? pipe IV ? D ? pipe III ? pipe III.
Sixth period: pipe III ? D ? A ? pipe III ? pipe III.
Seventh period: pipe III ? A ? pipe II ? pipe II ? A.

Therefore, there are indeed seven identical regular regions in the
Poincaré section, three of which are visible in the section, two inside
pipe IV, two others inside pipe III.
Please cite this article in press as: A. Beuf et al., Chaotic mixing efficiency in
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